Impact of Physics on Medical Sciences and Applications: Lasers and Nanotechnology


Journal of medical physics and applied sciences is an international peer reviwed journal aiming to publish the most relevant and recent research works across the world. Medical Physicists will contribute to maintaining and improving the quality, safety and cost-effectiveness of healthcare services through patient-oriented activities requiring expert action, involvement or advice regarding the specification, selection, acceptance testing, commissioning, quality assurance/control and optimised clinical use of medical devices and regarding patient risks and protection from associated physical agents (e.g. x-rays, electromagnetic fields, laser light, radionuclides) including the prevention of unintended or accidental exposures; all activities will be based on current best evidence or own scientific research when the available evidence is not sufficient. Medical physics is also called biomedical physics, medical biophysics or applied physics in medicine is, generally speaking, the application of physics concepts, theories and methods to medicine or healthcare.

We are sharing one of the most cited article from our journal. Article entitled “Impact of Physics on Medical Sciences and Applications: Lasers and Nanotechnology” was well written by Dr. Tharwat M. El-Sherbini.


This review article focuses on the latest advances in medical sciences that followed recent developments in physics. The focus here will be on the developments in those disciplines of physics namely; lasers and nanotechnology that are related to the research at the Laboratory of Lasers and New Materials (LLNM) of Cairo University and have direct connection to the field of Medical Physics. Laser induced breakdown spectroscopy (LIBS) has proven to be a powerful technique as a rapid and accurate tool for the identification and the analysis of microorganisms and human clinical specimens. It was applied in (LLNM) for the diagnosis and classification of liver cancer. New short wave length laser lines have been identified in (LLNM) which are important for the development of X-ray lasers that will have great impact on medical sciences and applications. Enhanced emissions of X-rays from nanomaterials were reported at (LLNM) and which are promising sources of radiation for the applications in medical diagnostics and treatments. The recent developments in lasers and nanotechnology have revolutionized both the research in biomedical science and the methods for medical diagnostics and treatments.

Here is the link to view complete article:

Authors are welcome to submit their manuscripts. Submit manuscript at (or) as an e-mail attachment to or

Media contact

Eliza Miller

Managing Editor

Journal of Medical Physics and Applied Sciences