Estimation of Radiation Dose in the Neonatal Intensive Care Unit (NICU)


Journal of medical physics and applied sciences is an international peer reviwed journal aiming to publish the most relevant and recent research works across the world. Medical Physicists will contribute to maintaining and improving the quality, safety and cost-effectiveness of healthcare services through patient-oriented activities requiring expert action, involvement or advice regarding the specification, selection, acceptance testing, commissioning, quality assurance/control and optimised clinical use of medical devices and regarding patient risks and protection from associated physical agents (e.g. x-rays, electromagnetic fields, laser light, radionuclides) including the prevention of unintended or accidental exposures; all activities will be based on current best evidence or own scientific research when the available evidence is not sufficient. Medical physics is also called biomedical physics, medical biophysics or applied physics in medicine is, generally speaking, the application of physics concepts, theories and methods to medicine or healthcare.

We are sharing one of the most cited article from our journal. Article entitled “Estimation of Radiation Dose in the Neonatal Intensive Care Unit (NICU)” was well written by Dr. Abukonna A.


An experimental study was carried out to determine the radiation doses received by the brain, thyroid glands and the genital organs (i.e. ovaries testicles) of the babies in the Neonatal Intensive Care Unit (NICU) during chest radiography. A Perspex block phantom of similar size to the neonate was exposed to radiation using the actual average exposure parameters that applied normally in the NICU. The doses were measured using thermo-luminance lithium fluoride dosimeter chips (TLD). The entrance and exit doses were then measured for the brain, thyroid and gonads organs. The measurement was obtained with and without shielding. The results of our study showed that infants did not receive what might be considered excessive radiation from diagnostic modalities. Entrance Skin Dose (ESD) was found to be below the European Committee (EC) reference dose of 80 mGy for mobile chest radiographs. Applying the radiation protection shield such as 0.5 mm lead rubber sheet is of great value in reducing the radiation doses to the brain cells and the gonadal organs.

Here is the link to view complete article:

Authors are welcome to submit their manuscripts. Submit manuscript at (or) as an e-mail attachment to or

Media contact

Eliza Miller

Managing Editor

Journal of Medical Physics and Applied Sciences